A neuromorphic system for video object recognition
نویسندگان
چکیده
Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational neuroscience models of feed-forward object detection and classification pipelines for processing visual data. The NEOVUS architecture is inspired by the ventral (what) and dorsal (where) streams of the mammalian visual pathway and integrates retinal processing, object detection based on form and motion modeling, and object classification based on convolutional neural networks. The object recognition performance and energy use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency (DARPA) under the Neovision2 program using three urban area video datasets collected from a mix of stationary and moving platforms. These datasets are challenging and include a large number of objects of different types in cluttered scenes, with varying illumination and occlusion conditions. In a systematic evaluation of five different teams by DARPA on these datasets, the NEOVUS demonstrated the best performance with high object recognition accuracy and the lowest energy consumption. Its energy use was three orders of magnitude lower than two independent state of the art baseline computer vision systems. The dynamic power requirement for the complete system mapped to commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ) per bit of incoming video. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition toward enabling practical low-power and mobile video processing applications.
منابع مشابه
Neuromorphic Circuits and its Various Applications: A Survey
Neuromorphic circuits are electronic analog circuits that mimic structural and functional behavior of nervous system. These circuits operate in parallel and distributed manner and able to perform various tasks such as pattern recognition, cognitive tasks, sensory integration etc. Neuromorphic circuits can be used for variety of applications such as visual tracking, motion estimation and object ...
متن کاملHardware implementation of machine vision systems: image and video processing
This contribution focuses on different topics covered by the special issue titled ‘Hardware Implementation of Machine vision Systems’ including FPGAs, GPUS, embedded systems, multicore implementations for image analysis such as edge detection, segmentation, pattern recognition and object recognition/interpretation, image enhancement/restoration, image/video compression, image similarity and ret...
متن کاملReal-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures ...
متن کاملPassenger/pedestrian Analysis by Neuromorphic Visual Information Processing
The physiological studies since the Hubel and Wiesel’s experimentation of cat’s visual cortex have confirmed the consensus about the brain’s intelligence of visual perception. A new way of enhancing the safety of vehicle is proposed by employing the neuromorphic VLSI or processing for mimicking the robust and natural intelligence of visual recognition, inspired by both the Hubel and Wiesel’s ex...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کامل